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Background

For a topological space X , O(X ) := {open sets in X}.
For a Borel space X , B(X ) := {Borel sets in X}.

Question O(X ) B(X ); how reversible is this?

Theorem (classical)

For a “nice” Borel space X , every B ∈ B(X ) is in some “nice” compatible topology.
Moreover, countably many Bi ∈ B(X ) may be made open at once.

“Nice” Borel space = standard Borel space
“Nice” topology = e.g., Polish

Theorem (Pettis)

For a Polish group G , U ∈ B(G ) is a nbhd of 1 iff ∃ ctbl G =
⋃

i Bi , BiB
−1
i ⊆ U.

Proof sketch. ⇐=: By Baire category, some Bi ⊇∗ Vi ∈ O(G ) \ {∅}

=⇒ U ⊇ BiB
−1
i ⊇ ViV

−1
i 3 1.
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Group actions

G y X :

G · x ∼= G/Gx G · y

· · ·

G · z

x y z

Theorem (Becker–Kechris 1996)

Let G be a Polish group, X be a standard Borel G -space. For B ∈ B(X ), TFAE:

(i) B is potentially open in some compat Polish top making G y X cts;

(ii) B is orbitwise open: for each x ∈ X , B is open in quotient top on G →→ G · x .

Moreover, ctbly many orbitwise open Bi may be made open at once.

Corollary Every standard Borel G -space may be made into a Polish G -space.

Corollary For a Polish G -sp X , topology may be refined to make orbwise open
(e.g., invariant)

B open.
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Goals

Better understanding of Becker–Kechris, and topological realizations in general.

1. Detailed characterization of potentially open Borel sets.
(i) potentially open

(ii) orbitwise open
(iii) preimage under action is ctbl union of Borel rectangles
(iv) translates are ctbly generated under unions
(v) ctbl union of Vaught transforms

2. New proof of Becker–Kechris theorem.
I more “topological” than original proof (and proof of Hjorth)
I does not use strong Choquet game
I easily generalizes to other contexts

3. Extend to various other contexts.
I potentially open n-ary relations
I non-Hausdorff (quasi-Polish) G -spaces
I groupoid actions
I actions preserving existing topology
I non-second-countable actions (on point-free “spaces”)
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Quasi-Polish spaces

Definition (de Brecht 2013) A quasi-Polish space is a “non-Hausdorff Polish space”.

I second-countable, completely quasi-metrizable

I Π0
2 subspace of SN, where S = {0, 1} w/ {1} open, and Π0

2 means
⋂

i (Ui ⇒ Vi )

I continuous open T0 quotient of NN

I recall: Polish = continuous open T3 quotient of NN

I T0 quotient of a Polish group action on Polish space (topol ergodic decomp)

Fact Polish = quasi-Polish + T3.

Fact Change of topology works the same for quasi-Polish as for Polish spaces.

Fact Quasi-Polish spaces are standard Borel and (completely) Baire.

Fact Quasi-Polish group = Polish group.
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Vaught transforms

Let G be a Polish group, µ : G × G → G group mult, α : G × X → X Borel action.

X

G × X

α
G

X

x

{(g,y)|gy=x}=α−1(x)

A

∃∗α(A)B

α−1(B)

G × X

Y ×X (G×X )G 2 × X

α

G×α

π2µ×G

U

B

U∗B

Transfer top on G to each α−1(x).

Definition For A ∈ B(G × X ),

∃∗α(A) := {x ∈ X | A nonmgr in α−1(x)}.

I For B ⊆ X , B = ∃∗α(α−1(B)).

I For pullback along f : Y → X ,

f −1(∃∗α(A)) = ∃∗π1(π−12 (A)).

In particular,

α−1(∃∗α(A)) = ∃∗G×α((µ× G )−1(A)).

Definition For U ∈ B(G ) and B ∈ B(X ),

(aka: B4U−1

) U ∗ B := ∃∗α(U × B).

U ∈ O(G ) =⇒ α−1(U ∗ B) =
⋃

VW⊆U(V × (W ∗ B)).
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Topological realization

Core Theorem (C. 2022)

Let G be a Polish group, X be a quasi-Polish space with a Borel G -action s.t.

O(G ) ∗ O(X ) ⊆ O(X ).

Then 〈O(G ) ∗ O(X )〉 is a compat quasi-Polish top making action cts.

Proof sketch. Action cts b/c α−1(U ∗ B) =
⋃

VW⊆U(V × (W ∗ B)).

Topology is quasi-Polish essentially b/c of retraction

O(G × X ) 〈O(G ) ∗ O(X )〉 ⊆ O(X )
∃∗α

α−1

Lemma Let f : X →→ Y be a Borel surj from a q-Pol sp to a st Borel sp. Suppose
each fiber f −1(y) is equipped with a coarser q-Pol top “in a Borel way”, and f is cts
wrt ∃∗f (O(X )). Then Z := smallest fbwise closed (in finer top) comgr (in coarser top)
⊆ X is Π0

2, and f |Z : Z →→ Y is cts open T0 quotient with ∃∗f = ∃∗f |Z .
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Topological realization

Theorem (Becker–Kechris; C.)

Let G be a Polish group, X be a standard Borel G -space. For B ∈ B(X ), TFAE:

(i) B is potentially open in some compat (quasi-)Polish top making G y X cts;

(ii) B is orbitwise open: for each x ∈ X , B is open in quotient top on G →→ G · x ;

(iii) α−1(B) =
⋃

i (Ui × Bi ) for ctbly many Ui ∈ O(G ) (or B(G )), Bi ∈ B(X );

(iv) {gB | g ∈ G} ⊆ closure under
⋃

of ctbly many Bi ∈ B(X );

(v) B =
⋃

i (Ui ∗ Bi ) for ctbly many Ui ∈ O(G ) (or B(G )), Bi ∈ B(X ).

Moreover, ctbly many such B may be made open at once.

Proof. (i) =⇒ (ii),(iv) =⇒ (iii) =⇒ (v) (both versions equiv by Pettis).

(v) =⇒ (i): To make ctbly may Ui ∗ Bi open, find compat q-Pol top O(X ) containing
each Bi and closed under O(G )∗. By Core Thm, 〈O(G ) ∗ O(X )〉 works.
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Comparison with original proof

Core Theorem (Becker–Kechris 1996)

Let G be a Polish group, X be a zero-dimensional Polish with a Borel G -action,
U ⊆ O(G ) and A ⊆ O(X ) be countable bases s.t. A is a Boolean algebra and

U ∗ A ⊆ A.
Then 〈U ∗ A〉 is a compat Polish top making action cts.

The proof consists of showing:

1. the action is cts;

2. the topology is T3;

3. the topology is strong Choquet.

Combining 1. and 2. with our Core Thm yields a Polish top realization.



Comparison with Hjorth–Sami

Core Theorem (Becker–Kechris 1996)

Let G be a Polish group, X be a zero-dimensional Polish with a Borel G -action,
U ⊆ O(G ) and A ⊆ O(X ) be countable bases s.t. A is a Boolean algebra and

U ∗ A ⊆ A.
Then 〈U ∗ A〉 is a compat Polish top making action cts.

Corollary (B–K) If X is already a Polish G -space, and U ∈ O(G ), B ∈ Σ0
ξ(X ), then

U ∗ B may be made open in a finer Polish topology ⊆ Σ0
ξ+ω.

Theorem (Hjorth 1999) In fact, the new Polish topology may be contained in Σ0
ξ .

Theorem (Sami 1994) If G is non-Archimedean and ξ ≥ 2, the new topology may be 0-d.

Corollary (of our Core Thm) For a quasi-Polish G -space X and B ∈ Σ0
ξ(X ), U ∗ B is

open in a finer quasi-Polish topology ⊆ Σ0
ξ(X ).
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Comparison with Hjorth–Sami

Better Core Theorem (C.)

Let G be a Polish group, X be a quasi-Polish with a Borel G -action,
U ⊆ O(G ) and A ⊆ O(X ) be countable bases s.t. U = U−1, A is a lattice, and

U ∗ A ⊆ A.
Then letting B be the Boolean algebra generated by A, 〈U ∗ B〉 is a compat Polish top
making the action cts, and is 0-d if U consists of cosets.

Corollary For a quasi-Polish G -space X and B ∈ Σ0
ξ(X ), ξ ≥ 2, U ∗ B is open in a

finer Polish topology ⊆ Σ0
ξ(X ) (0-d if G is non-Archimedean).
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Automatic continuity for actions

Theorem (classical for Polish; C.)

Let G be a Polish group, X be a quasi-Polish G -space with a Borel action of G via
homeomorphisms. Then the action is jointly continuous.

In other words, “if the action preserves an existing topology, we may find a topological
realization compatible with that existing topology”.

Proof. For B ∈ O(X ), by K–N, α−1(B) =
⋃

i (Ui × Bi ) where Ui ∈ B(G ), Bi ∈ O(X ).

So for any U ∈ O(G ),

U ∗ B = ∃∗α((U × X ) ∩ π−12 (B))

= ∃∗π2((U × X ) ∩ α−1(B))

=
⋃

U∩Ui 6=∗∅ Bi ∈ O(X ).

So O(G ) ∗ O(X ) ⊆ O(X ). By Pettis, B =
⋃

i (Ui ∗ Bi ) ∈ 〈O(G ) ∗ O(X )〉 = O(X ).
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Groupoids

Definition A groupoid G consists of two maps G G0
σ

τ
(src, tgt) and operations

G0 x y z
g

h◦g1x

h

g−1

X

p

p−1(x)3a 7→g ·a∈p−1(y)

An action of G on a bundle p : X → G0 is a map α : G ×G0 X → X s.t.
each g : x → y ∈ G acts via a map p−1(x)→ p−1(y).

A topological groupoid G is open if σ (equivalently, τ, µ) are.

Note Most open quasi-Polish groupoids are not Polish!
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Topological realization for groupoid actions

Theorem (Lupini for Polish; C.)

Let G be an open q-Pol gpd, p : X → G0 a st Borel G -space. For B ∈ B(X ), TFAE:

(i) B is potentially open in some compat quasi-Polish top making p, α cts;

(ii) B is orbitwise open: ∀a ∈ p−1(x), B is open in quot top on σ−1(x)→→ G · a;

(iii), (iv), (v) similarly to before.

Moreover, ctbly many such B may be made open at once.

Corollary If X is a quasi-Polish G -space, and B ∈ Σ0
ξ(X ), then U ∗ B may be made

open in a finer quasi-Polish topology ⊆ Σ0
ξ .

Theorem (C.)

Let G be an open q-Pol gpd, p : X → G0 a standard Borel bundle of q-Pol spaces
with a G -action via homeos. Then ∃ global q-Pol top on X restricting to fiberwise tops.
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Open relations

For a group(oid) action on X , we know B ∈ B(X ) potentially open iff orbitwise open.
What about R ∈ B(X n)?

Remark For a st Borel space X , R ∈ X n is potentially open iff R =
⋃

i (Bi ,1 × · · · × Bi ,n).

Theorem (C.)

Let G be a Polish group, X be a st Borel G -space. For R ∈ B(X n), TFAE:

(i) R is potentially open in product top for some q-Pol top on X making action cts;

(ii) R is a ctbl union of Vaught transforms of Borel rectangles;

. . . (7 more conditions)

In particular, this holds if R is G -invariant and a ctbl union of Borel rectangles:

Corollary If (X ,Ri )i is a st Borel relational G -structure, s.t. each Ri is a ctbl union
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