Topology versus Borel structure for actions

Ronnie Chen

University of Michigan

McGill DDC seminar, October 18, 2022

For a topological space X, $\mathcal{O}(X) := \{\text{open sets in } X\}$. For a Borel space X, $\mathcal{B}(X) := \{\text{Borel sets in } X\}$.

For a topological space X, $\mathcal{O}(X) := \{\text{open sets in } X\}$. For a Borel space X, $\mathcal{B}(X) := \{\text{Borel sets in } X\}$. Question $\mathcal{O}(X) \rightsquigarrow \mathcal{B}(X)$; how reversible is this?

For a topological space X, $\mathcal{O}(X) := \{\text{open sets in } X\}$. For a Borel space X, $\mathcal{B}(X) := \{\text{Borel sets in } X\}$. Question $\mathcal{O}(X) \rightsquigarrow \mathcal{B}(X)$; how reversible is this?

Theorem (classical)

For a "nice" Borel space X, every $B \in \mathcal{B}(X)$ is in some "nice" compatible topology. Moreover, countably many $B_i \in \mathcal{B}(X)$ may be made open at once.

"Nice" Borel space = standard Borel space "Nice" topology = e.g., Polish

For a topological space X, $\mathcal{O}(X) := \{\text{open sets in } X\}$. For a Borel space X, $\mathcal{B}(X) := \{\text{Borel sets in } X\}$. Question $\mathcal{O}(X) \rightsquigarrow \mathcal{B}(X)$; how reversible is this?

Theorem (classical)

For a "nice" Borel space X, every $B \in \mathcal{B}(X)$ is in some "nice" compatible topology. Moreover, countably many $B_i \in \mathcal{B}(X)$ may be made open at once.

```
"Nice" Borel space = standard Borel space
"Nice" topology = e.g., Polish
```

Theorem (Pettis)

For a Polish group G, $U \in \mathcal{B}(G)$ is a nbhd of 1 iff \exists ctbl $G = \bigcup_i B_i$, $B_i B_i^{-1} \subseteq U$.

For a topological space X, $\mathcal{O}(X) := \{\text{open sets in } X\}$. For a Borel space X, $\mathcal{B}(X) := \{\text{Borel sets in } X\}$. Question $\mathcal{O}(X) \rightsquigarrow \mathcal{B}(X)$; how reversible is this?

Theorem (classical)

For a "nice" Borel space X, every $B \in \mathcal{B}(X)$ is in some "nice" compatible topology. Moreover, countably many $B_i \in \mathcal{B}(X)$ may be made open at once.

```
"Nice" Borel space = standard Borel space
"Nice" topology = e.g., Polish
```

Theorem (Pettis)

For a Polish group G, $U \in \mathcal{B}(G)$ is a nbhd of 1 iff \exists ctbl $G = \bigcup_i B_i$, $B_i B_i^{-1} \subseteq U$.

Proof sketch. \Leftarrow : By Baire category, some $B_i \supseteq^* V_i \in \mathcal{O}(G) \setminus \{\emptyset\}$

For a topological space X, $\mathcal{O}(X) := \{\text{open sets in } X\}$. For a Borel space X, $\mathcal{B}(X) := \{\text{Borel sets in } X\}$. Question $\mathcal{O}(X) \rightsquigarrow \mathcal{B}(X)$; how reversible is this?

Theorem (classical)

For a "nice" Borel space X, every $B \in \mathcal{B}(X)$ is in some "nice" compatible topology. Moreover, countably many $B_i \in \mathcal{B}(X)$ may be made open at once.

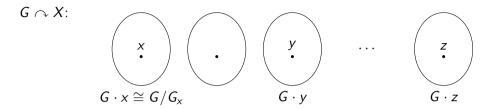
"Nice" Borel space = standard Borel space "Nice" topology = e.g., Polish

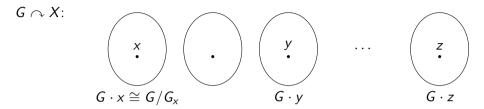
Theorem (Pettis)

For a Polish group G, $U \in \mathcal{B}(G)$ is a nbhd of 1 iff \exists ctbl $G = \bigcup_i B_i$, $B_i B_i^{-1} \subseteq U$.

Proof sketch. \Leftarrow : By Baire category, some $B_i \supseteq^* V_i \in \mathcal{O}(G) \setminus \{\emptyset\}$

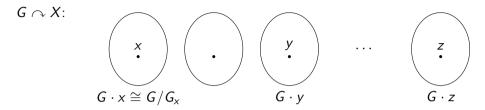
$$\implies U \supseteq B_i B_i^{-1} \supseteq V_i V_i^{-1} \ni 1.$$





Theorem (Becker–Kechris 1996)

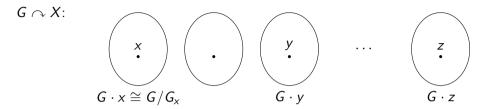
Let G be a Polish group, X be a standard Borel G-space. For $B \in \mathcal{B}(X)$, TFAE: (i) B is **potentially open** in some compat Polish top making $G \curvearrowright X$ cts; (ii) B is **orbitwise open**: for each $x \in X$, B is open in quotient top on $G \twoheadrightarrow G \cdot x$. Moreover, ctbly many orbitwise open B_i may be made open at once.



Theorem (Becker–Kechris 1996)

Let G be a Polish group, X be a standard Borel G-space. For $B \in \mathcal{B}(X)$, TFAE: (i) B is **potentially open** in some compat Polish top making $G \curvearrowright X$ cts; (ii) B is **orbitwise open**: for each $x \in X$, B is open in quotient top on $G \twoheadrightarrow G \cdot x$. Moreover, ctbly many orbitwise open B_i may be made open at once.

Corollary Every standard Borel G-space may be made into a Polish G-space.



Theorem (Becker–Kechris 1996)

Let G be a Polish group, X be a standard Borel G-space. For $B \in \mathcal{B}(X)$, TFAE: (i) B is **potentially open** in some compat Polish top making $G \curvearrowright X$ cts; (ii) B is **orbitwise open**: for each $x \in X$, B is open in quotient top on $G \twoheadrightarrow G \cdot x$. Moreover, ctbly many orbitwise open B_i may be made open at once.

Corollary Every standard Borel G-space may be made into a Polish G-space. Corollary For a Polish G-sp X, topology may be refined to make orbwise open B open. (e.g., invariant)

- 1. Detailed characterization of potentially open Borel sets.
 - (i) potentially open
 - (ii) orbitwise open
 - (iii) preimage under action is ctbl union of Borel rectangles
 - (iv) translates are ctbly generated under unions
 - (v) ctbl union of Vaught transforms

- 1. Detailed characterization of potentially open Borel sets.
 - (i) potentially open
 - (ii) orbitwise open
 - (iii) preimage under action is ctbl union of Borel rectangles
 - (iv) translates are ctbly generated under unions
 - (v) ctbl union of Vaught transforms
- 2. New proof of Becker-Kechris theorem.
 - more "topological" than original proof (and proof of Hjorth)
 - does not use strong Choquet game
 - easily generalizes to other contexts

- 1. Detailed characterization of potentially open Borel sets.
 - (i) potentially open
 - (ii) orbitwise open
 - (iii) preimage under action is ctbl union of Borel rectangles
 - (iv) translates are ctbly generated under unions
 - (v) ctbl union of Vaught transforms
- 2. New proof of Becker-Kechris theorem.
 - more "topological" than original proof (and proof of Hjorth)
 - does not use strong Choquet game
 - easily generalizes to other contexts
- 3. Extend to various other contexts.
 - potentially open *n*-ary relations
 - non-Hausdorff (quasi-Polish) G-spaces
 - groupoid actions
 - actions preserving existing topology
 - non-second-countable actions (on point-free "spaces")

Definition (de Brecht 2013) A quasi-Polish space is a "non-Hausdorff Polish space".

Definition (de Brecht 2013) A quasi-Polish space is a "non-Hausdorff Polish space".

- second-countable, completely quasi-metrizable
- ▶ Π_2^0 subspace of $\mathbb{S}^{\mathbb{N}}$, where $\mathbb{S} = \{0,1\}$ w/ $\{1\}$ open, and Π_2^0 means $\bigcap_i (U_i \Rightarrow V_i)$

▶ continuous open T_0 quotient of $\mathbb{N}^{\mathbb{N}}$

▶ recall: Polish = continuous open T_3 quotient of $\mathbb{N}^{\mathbb{N}}$

> T_0 quotient of a Polish group action on Polish space (topol ergodic decomp)

Definition (de Brecht 2013) A quasi-Polish space is a "non-Hausdorff Polish space".

- second-countable, completely quasi-metrizable
- ▶ Π_2^0 subspace of $\mathbb{S}^{\mathbb{N}}$, where $\mathbb{S} = \{0,1\}$ w/ $\{1\}$ open, and Π_2^0 means $\bigcap_i (U_i \Rightarrow V_i)$

▶ continuous open T_0 quotient of $\mathbb{N}^{\mathbb{N}}$

- ▶ recall: Polish = continuous open T_3 quotient of $\mathbb{N}^{\mathbb{N}}$
- ► T₀ quotient of a Polish group action on Polish space (topol ergodic decomp)

Fact $Polish = quasi-Polish + T_3$.

Definition (de Brecht 2013) A quasi-Polish space is a "non-Hausdorff Polish space".

- second-countable, completely quasi-metrizable
- ▶ Π_2^0 subspace of $\mathbb{S}^{\mathbb{N}}$, where $\mathbb{S} = \{0,1\}$ w/ $\{1\}$ open, and Π_2^0 means $\bigcap_i (U_i \Rightarrow V_i)$

▶ continuous open T_0 quotient of $\mathbb{N}^{\mathbb{N}}$

- ▶ recall: Polish = continuous open T_3 quotient of $\mathbb{N}^{\mathbb{N}}$
- ► T₀ quotient of a Polish group action on Polish space (topol ergodic decomp)

Fact $Polish = quasi-Polish + T_3$.

Fact Change of topology works the same for quasi-Polish as for Polish spaces.

Definition (de Brecht 2013) A quasi-Polish space is a "non-Hausdorff Polish space".

- second-countable, completely quasi-metrizable
- ▶ Π_2^0 subspace of $\mathbb{S}^{\mathbb{N}}$, where $\mathbb{S} = \{0,1\}$ w/ $\{1\}$ open, and Π_2^0 means $\bigcap_i (U_i \Rightarrow V_i)$

▶ continuous open T_0 quotient of $\mathbb{N}^{\mathbb{N}}$

- ▶ recall: Polish = continuous open T_3 quotient of $\mathbb{N}^{\mathbb{N}}$
- ► T₀ quotient of a Polish group action on Polish space (topol ergodic decomp)

Fact $Polish = quasi-Polish + T_3$.

Fact Change of topology works the same for quasi-Polish as for Polish spaces.

Fact Quasi-Polish spaces are standard Borel and (completely) Baire.

Definition (de Brecht 2013) A quasi-Polish space is a "non-Hausdorff Polish space".

- second-countable, completely quasi-metrizable
- ▶ Π_2^0 subspace of $\mathbb{S}^{\mathbb{N}}$, where $\mathbb{S} = \{0,1\}$ w/ $\{1\}$ open, and Π_2^0 means $\bigcap_i (U_i \Rightarrow V_i)$

▶ continuous open T_0 quotient of $\mathbb{N}^{\mathbb{N}}$

- ▶ recall: Polish = continuous open T_3 quotient of $\mathbb{N}^{\mathbb{N}}$
- ► T₀ quotient of a Polish group action on Polish space (topol ergodic decomp)

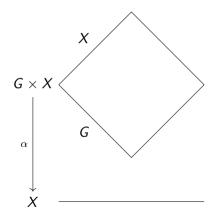
Fact $Polish = quasi-Polish + T_3$.

Fact Change of topology works the same for quasi-Polish as for Polish spaces.

Fact Quasi-Polish spaces are standard Borel and (completely) Baire.

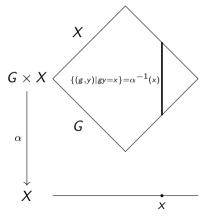
Fact Quasi-Polish group = Polish group.

Let G be a Polish group, $\mu: G \times G \rightarrow G$ group mult, $\alpha: G \times X \rightarrow X$ Borel action.



Let G be a Polish group, $\mu: G \times G \to G$ group mult, $\alpha: G \times X \to X$ Borel action.

Transfer top on *G* to each $\alpha^{-1}(x)$.

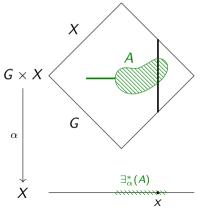


Let G be a Polish group, $\mu: G \times G \rightarrow G$ group mult, $\alpha: G \times X \rightarrow X$ Borel action.

Transfer top on G to each $\alpha^{-1}(x)$.

Definition For $A \in \mathcal{B}(G \times X)$,

 $\exists_{\alpha}^{*}(A) := \{x \in X \mid A \text{ nonmgr in } \alpha^{-1}(x)\}.$



Let G be a Polish group, $\mu: G \times G \rightarrow G$ group mult, $\alpha: G \times X \rightarrow X$ Borel action.

Х $G \times X$ $\alpha^{-1}(B)$ G α R Х х

Transfer top on G to each $\alpha^{-1}(x)$.

Definition For $A \in \mathcal{B}(G \times X)$,

 $\exists_{\alpha}^{*}(A) := \{x \in X \mid A \text{ nonmgr in } \alpha^{-1}(x)\}.$

For
$$B \subseteq X$$
, $B = \exists_{\alpha}^*(\alpha^{-1}(B))$.

Let G be a Polish group, $\mu: G \times G \rightarrow G$ group mult, $\alpha: G \times X \rightarrow X$ Borel action.

Transfer top on G to each $\alpha^{-1}(x)$.

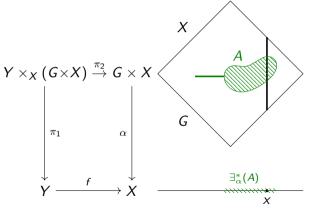
Definition For $A \in \mathcal{B}(G \times X)$,

 $\exists_{\alpha}^{*}(A) := \{x \in X \mid A \text{ nonmgr in } \alpha^{-1}(x)\}.$

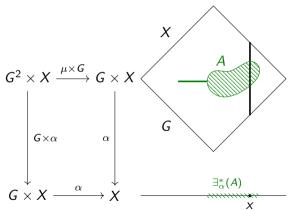
• For
$$B \subseteq X$$
, $B = \exists_{\alpha}^*(\alpha^{-1}(B))$.

• For pullback along
$$f: Y \to X$$
,

$$f^{-1}(\exists^*_{lpha}(A)) = \exists^*_{\pi_1}(\pi_2^{-1}(A)).$$



Let G be a Polish group, $\mu: G \times G \rightarrow G$ group mult, $\alpha: G \times X \rightarrow X$ Borel action.



Transfer top on G to each $\alpha^{-1}(x)$.

Definition For $A \in \mathcal{B}(G \times X)$,

 $\exists_{\alpha}^{*}(A) := \{x \in X \mid A \text{ nonmgr in } \alpha^{-1}(x)\}.$

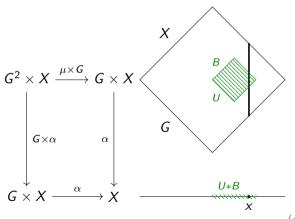
• For
$$B \subseteq X$$
, $B = \exists_{\alpha}^*(\alpha^{-1}(B))$.

For pullback along $f : Y \to X$, $f^{-1}(\exists^*_{\alpha}(A)) = \exists^*_{\pi_1}(\pi_2^{-1}(A)).$

In particular,

 $\alpha^{-1}(\exists^*_{\alpha}(A)) = \exists^*_{G \times \alpha}((\mu \times G)^{-1}(A)).$

Let G be a Polish group, $\mu: G \times G \rightarrow G$ group mult, $\alpha: G \times X \rightarrow X$ Borel action.



Transfer top on G to each $\alpha^{-1}(x)$.

Definition For $A \in \mathcal{B}(G \times X)$,

 $\exists_{\alpha}^{*}(A) := \{x \in X \mid A \text{ nonmgr in } \alpha^{-1}(x)\}.$

• For
$$B \subseteq X$$
, $B = \exists_{\alpha}^*(\alpha^{-1}(B))$.

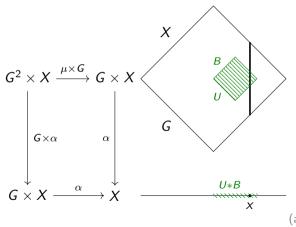
For pullback along $f : Y \to X$, $f^{-1}(\exists^*_{\alpha}(A)) = \exists^*_{\pi_1}(\pi_2^{-1}(A)).$

In particular,

 $\alpha^{-1}(\exists_{\alpha}^{*}(A)) = \exists_{G \times \alpha}^{*}((\mu \times G)^{-1}(A)).$

Definition For $U \in \mathcal{B}(G)$ and $B \in \mathcal{B}(X)$, (aka: $B^{\triangle U^{-1}}$) $U * B := \exists_{\alpha}^{*}(U \times B)$.

Let G be a Polish group, $\mu: G \times G \rightarrow G$ group mult, $\alpha: G \times X \rightarrow X$ Borel action.



Transfer top on G to each $\alpha^{-1}(x)$. Definition For $A \in \mathcal{B}(G \times X)$, $\exists_{\alpha}^{*}(A) := \{ x \in X \mid A \text{ nonmgr in } \alpha^{-1}(x) \}.$ For $B \subseteq X$, $B = \exists_{\alpha}^*(\alpha^{-1}(B))$. For pullback along $f: Y \to X$, $f^{-1}(\exists_{\alpha}^{*}(A)) = \exists_{\pi_{1}}^{*}(\pi_{2}^{-1}(A)).$ In particular, $\alpha^{-1}(\exists_{\alpha}^{*}(A)) = \exists_{C \times \alpha}^{*}((\mu \times G)^{-1}(A)).$ Definition For $U \in \mathcal{B}(G)$ and $B \in \mathcal{B}(X)$, (aka: $B^{\Delta U^{-1}}$) $U * B := \exists_{\alpha}^{*}(U \times B)$. $U \in \mathcal{O}(G) \implies \alpha^{-1}(U * B) = \bigcup_{V \in U} (V \times (W * B)).$

Core Theorem (C. 2022)

Let G be a Polish group, X be a quasi-Polish space with a Borel G-action s.t.

 $\mathcal{O}(G) * \mathcal{O}(X) \subseteq \mathcal{O}(X).$

Then $\langle \mathcal{O}(G) * \mathcal{O}(X) \rangle$ is a compat quasi-Polish top making action cts.

Core Theorem (C. 2022)

Let G be a Polish group, X be a quasi-Polish space with a Borel G-action s.t.

 $\mathcal{O}(G) * \mathcal{O}(X) \subseteq \mathcal{O}(X).$

Then $\langle \mathcal{O}(G) * \mathcal{O}(X) \rangle$ is a compat quasi-Polish top making action cts.

Proof sketch. Action cts b/c $\alpha^{-1}(U * B) = \bigcup_{VW \subseteq U} (V \times (W * B)).$

Core Theorem (C. 2022)

Let G be a Polish group, X be a quasi-Polish space with a Borel G-action s.t. $\mathcal{O}(G) : \mathcal{O}(X) \subset \mathcal{O}(X)$

 $\mathcal{O}(G) * \mathcal{O}(X) \subseteq \mathcal{O}(X).$

Then $\langle \mathcal{O}(G) * \mathcal{O}(X) \rangle$ is a compat quasi-Polish top making action cts.

Proof sketch. Action cts b/c $\alpha^{-1}(U * B) = \bigcup_{VW \subseteq U} (V \times (W * B)).$

Topology is quasi-Polish essentially b/c of retraction

$$\mathcal{O}({\sf G} imes {\sf X}) \stackrel{\exists^*_lpha}{\longleftarrow}_{lpha^{-1}} \langle \mathcal{O}({\sf G}) * \mathcal{O}({\sf X})
angle \subseteq \mathcal{O}({\sf X})$$

Core Theorem (C. 2022)

Let G be a Polish group, X be a quasi-Polish space with a Borel G-action s.t.

 $\mathcal{O}(G) * \mathcal{O}(X) \subseteq \mathcal{O}(X).$

Then $\langle \mathcal{O}(G) * \mathcal{O}(X) \rangle$ is a compat quasi-Polish top making action cts.

Proof sketch. Action cts b/c $\alpha^{-1}(U * B) = \bigcup_{VW \subseteq U} (V \times (W * B)).$

Topology is quasi-Polish essentially b/c of retraction

$$\mathcal{O}(\mathsf{G} imes \mathsf{X}) \xleftarrow{\exists^*_lpha}{ \overleftarrow{ lpha^{-1}}} \langle \mathcal{O}(\mathsf{G}) * \mathcal{O}(\mathsf{X})
angle \subseteq \mathcal{O}(\mathsf{X})$$

Lemma Let $f : X \twoheadrightarrow Y$ be a Borel surj from a q-Pol sp to a st Borel sp. Suppose each fiber $f^{-1}(y)$ is equipped with a coarser q-Pol top "in a Borel way", and f is cts wrt $\exists_f^*(\mathcal{O}(X))$. Then Z := smallest fbwise closed (in finer top) comgr (in coarser top) $\subseteq X$ is Π_2^0 , and $f|Z : Z \twoheadrightarrow Y$ is cts open T_0 quotient with $\exists_f^* = \exists_{f|Z}^*$.

Theorem (Becker–Kechris; C.)

Let G be a Polish group, X be a standard Borel G-space. For $B \in \mathcal{B}(X)$, TFAE: (i) B is **potentially open** in some compat (quasi-)Polish top making $G \cap X$ cts; (ii) B is **orbitwise open**: for each $x \in X$, B is open in quotient top on $G \twoheadrightarrow G \cdot x$; (iii) $\alpha^{-1}(B) = \bigcup_i (U_i \times B_i)$ for ctbly many $U_i \in \mathcal{O}(G)$ (or $\mathcal{B}(G)$), $B_i \in \mathcal{B}(X)$; (iv) $\{gB \mid g \in G\} \subseteq$ closure under \bigcup of ctbly many $B_i \in \mathcal{B}(X)$; (v) $B = \bigcup_i (U_i * B_i)$ for ctbly many $U_i \in \mathcal{O}(G)$ (or $\mathcal{B}(G)$), $B_i \in \mathcal{B}(X)$. Moreover, ctbly many such B may be made open at once.

Theorem (Becker–Kechris; C.)

Let G be a Polish group, X be a standard Borel G-space. For $B \in \mathcal{B}(X)$, TFAE: (i) B is **potentially open** in some compat (quasi-)Polish top making $G \curvearrowright X$ cts; (ii) B is **orbitwise open**: for each $x \in X$, B is open in quotient top on $G \twoheadrightarrow G \cdot x$; (iii) $\alpha^{-1}(B) = \bigcup_i (U_i \times B_i)$ for ctbly many $U_i \in \mathcal{O}(G)$ (or $\mathcal{B}(G)$), $B_i \in \mathcal{B}(X)$; (iv) $\{gB \mid g \in G\} \subseteq$ closure under \bigcup of ctbly many $B_i \in \mathcal{B}(X)$; (v) $B = \bigcup_i (U_i * B_i)$ for ctbly many $U_i \in \mathcal{O}(G)$ (or $\mathcal{B}(G)$), $B_i \in \mathcal{B}(X)$. Moreover, ctbly many such B may be made open at once.

Proof. (i) \implies (ii),(iv)

Theorem (Becker–Kechris; C.)

Let G be a Polish group, X be a standard Borel G-space. For $B \in \mathcal{B}(X)$, TFAE: (i) B is **potentially open** in some compat (quasi-)Polish top making $G \curvearrowright X$ cts; (ii) B is **orbitwise open**: for each $x \in X$, B is open in quotient top on $G \twoheadrightarrow G \cdot x$; (iii) $\alpha^{-1}(B) = \bigcup_i (U_i \times B_i)$ for ctbly many $U_i \in \mathcal{O}(G)$ (or $\mathcal{B}(G)$), $B_i \in \mathcal{B}(X)$; (iv) $\{gB \mid g \in G\} \subseteq$ closure under \bigcup of ctbly many $B_i \in \mathcal{B}(X)$; (v) $B = \bigcup_i (U_i * B_i)$ for ctbly many $U_i \in \mathcal{O}(G)$ (or $\mathcal{B}(G)$), $B_i \in \mathcal{B}(X)$. Moreover, ctbly many such B may be made open at once.

Proof. (i) \Longrightarrow (ii),(iv) \Longrightarrow (iii) by

Theorem (Kunugui–Novikov) Let $f : X \to Y$ be a Borel map between st Borel spaces, $S \subseteq B(X)$ be ctble. If $A \in B(X)$ is f-fiberwise a union of sets in S, then

 $A = \bigcup_{S \in S} (f^{-1}(B_S) \cap S)$ for $B_S \in \mathcal{B}(Y)$.

Theorem (Becker–Kechris; C.)

Let G be a Polish group, X be a standard Borel G-space. For $B \in \mathcal{B}(X)$, TFAE: (i) B is **potentially open** in some compat (quasi-)Polish top making $G \curvearrowright X$ cts; (ii) B is **orbitwise open**: for each $x \in X$, B is open in quotient top on $G \twoheadrightarrow G \cdot x$; (iii) $\alpha^{-1}(B) = \bigcup_i (U_i \times B_i)$ for ctbly many $U_i \in \mathcal{O}(G)$ (or $\mathcal{B}(G)$), $B_i \in \mathcal{B}(X)$; (iv) $\{gB \mid g \in G\} \subseteq$ closure under \bigcup of ctbly many $B_i \in \mathcal{B}(X)$; (v) $B = \bigcup_i (U_i * B_i)$ for ctbly many $U_i \in \mathcal{O}(G)$ (or $\mathcal{B}(G)$), $B_i \in \mathcal{B}(X)$. Moreover, ctbly many such B may be made open at once.

Proof. (i) \Longrightarrow (ii),(iv) \Longrightarrow (iii) \Longrightarrow (v) by $B = \exists_{\alpha}^{*}(\alpha^{-1}(B))$

Theorem (Becker–Kechris; C.)

Let G be a Polish group, X be a standard Borel G-space. For $B \in \mathcal{B}(X)$, TFAE: (i) B is **potentially open** in some compat (quasi-)Polish top making $G \curvearrowright X$ cts; (ii) B is **orbitwise open**: for each $x \in X$, B is open in quotient top on $G \twoheadrightarrow G \cdot x$; (iii) $\alpha^{-1}(B) = \bigcup_i (U_i \times B_i)$ for ctbly many $U_i \in \mathcal{O}(G)$ (or $\mathcal{B}(G)$), $B_i \in \mathcal{B}(X)$; (iv) $\{gB \mid g \in G\} \subseteq$ closure under \bigcup of ctbly many $B_i \in \mathcal{B}(X)$; (v) $B = \bigcup_i (U_i * B_i)$ for ctbly many $U_i \in \mathcal{O}(G)$ (or $\mathcal{B}(G)$), $B_i \in \mathcal{B}(X)$. Moreover, ctbly many such B may be made open at once.

Proof. (i) \Longrightarrow (ii),(iv) \Longrightarrow (iii) \Longrightarrow (v) (both versions equiv by Pettis).

Theorem (Becker–Kechris; C.)

Let G be a Polish group, X be a standard Borel G-space. For $B \in \mathcal{B}(X)$, TFAE: (i) B is **potentially open** in some compat (quasi-)Polish top making $G \curvearrowright X$ cts; (ii) B is **orbitwise open**: for each $x \in X$, B is open in quotient top on $G \twoheadrightarrow G \cdot x$; (iii) $\alpha^{-1}(B) = \bigcup_i (U_i \times B_i)$ for ctbly many $U_i \in \mathcal{O}(G)$ (or $\mathcal{B}(G)$), $B_i \in \mathcal{B}(X)$; (iv) $\{gB \mid g \in G\} \subseteq$ closure under \bigcup of ctbly many $B_i \in \mathcal{B}(X)$; (v) $B = \bigcup_i (U_i * B_i)$ for ctbly many $U_i \in \mathcal{O}(G)$ (or $\mathcal{B}(G)$), $B_i \in \mathcal{B}(X)$. Moreover, ctbly many such B may be made open at once.

Proof. (i) \implies (ii),(iv) \implies (iii) \implies (v) (both versions equiv by Pettis).

 $(v) \Longrightarrow (i)$: To make ctbly may $U_i * B_i$ open, find compat q-Pol top $\mathcal{O}(X)$ containing each B_i and closed under $\mathcal{O}(G)*$.

Theorem (Becker–Kechris; C.)

Let G be a Polish group, X be a standard Borel G-space. For $B \in \mathcal{B}(X)$, TFAE: (i) B is **potentially open** in some compat (quasi-)Polish top making $G \curvearrowright X$ cts; (ii) B is **orbitwise open**: for each $x \in X$, B is open in quotient top on $G \twoheadrightarrow G \cdot x$; (iii) $\alpha^{-1}(B) = \bigcup_i (U_i \times B_i)$ for ctbly many $U_i \in \mathcal{O}(G)$ (or $\mathcal{B}(G)$), $B_i \in \mathcal{B}(X)$; (iv) $\{gB \mid g \in G\} \subseteq$ closure under \bigcup of ctbly many $B_i \in \mathcal{B}(X)$; (v) $B = \bigcup_i (U_i * B_i)$ for ctbly many $U_i \in \mathcal{O}(G)$ (or $\mathcal{B}(G)$), $B_i \in \mathcal{B}(X)$. Moreover, ctbly many such B may be made open at once.

Proof. (i) \implies (ii),(iv) \implies (iii) \implies (v) (both versions equiv by Pettis).

 $(v) \Longrightarrow (i)$: To make ctbly may $U_i * B_i$ open, find compat q-Pol top $\mathcal{O}(X)$ containing each B_i and closed under $\mathcal{O}(G)*$. By Core Thm, $\langle \mathcal{O}(G) * \mathcal{O}(X) \rangle$ works.

Comparison with original proof

Core Theorem (Becker-Kechris 1996)

Let G be a Polish group, X be a zero-dimensional Polish with a Borel G-action, $U \subseteq \mathcal{O}(G)$ and $\mathcal{A} \subseteq \mathcal{O}(X)$ be countable bases s.t. \mathcal{A} is a Boolean algebra and

 $\mathcal{U} * \mathcal{A} \subseteq \mathcal{A}.$

Then $\langle \mathcal{U} * \mathcal{A} \rangle$ is a compat Polish top making action cts.

The proof consists of showing:

- 1. the action is cts;
- 2. the topology is T_3 ;
- 3. the topology is strong Choquet.

Combining 1. and 2. with our Core Thm yields a Polish top realization.

Core Theorem (Becker-Kechris 1996)

Let G be a Polish group, X be a zero-dimensional Polish with a Borel G-action, $\mathcal{U} \subseteq \mathcal{O}(G)$ and $\mathcal{A} \subseteq \mathcal{O}(X)$ be countable bases s.t. \mathcal{A} is a Boolean algebra and

 $\mathcal{U} * \mathcal{A} \subseteq \mathcal{A}.$

Then $\langle \mathcal{U} * \mathcal{A} \rangle$ is a compat Polish top making action cts.

Corollary (B–K) If X is already a Polish G-space, and $U \in \mathcal{O}(G)$, $B \in \Sigma^0_{\xi}(X)$, then U * B may be made open in a finer Polish topology $\subseteq \Sigma^0_{\xi+\omega}$.

Core Theorem (Becker-Kechris 1996)

Let G be a Polish group, X be a zero-dimensional Polish with a Borel G-action, $\mathcal{U} \subseteq \mathcal{O}(G)$ and $\mathcal{A} \subseteq \mathcal{O}(X)$ be countable bases s.t. \mathcal{A} is a Boolean algebra and

 $\mathcal{U} * \mathcal{A} \subseteq \mathcal{A}.$

Then $\langle \mathcal{U} * \mathcal{A} \rangle$ is a compat Polish top making action cts.

Corollary (B–K) If X is already a Polish G-space, and $U \in \mathcal{O}(G)$, $B \in \Sigma^0_{\xi}(X)$, then U * B may be made open in a finer Polish topology $\subseteq \Sigma^0_{\xi+\omega}$.

Theorem (Hjorth 1999) In fact, the new Polish topology may be contained in Σ_{ξ}^{0} .

Core Theorem (Becker-Kechris 1996)

Let G be a Polish group, X be a zero-dimensional Polish with a Borel G-action, $\mathcal{U} \subseteq \mathcal{O}(G)$ and $\mathcal{A} \subseteq \mathcal{O}(X)$ be countable bases s.t. \mathcal{A} is a Boolean algebra and

 $\mathcal{U} * \mathcal{A} \subseteq \mathcal{A}.$

Then $\langle \mathcal{U} * \mathcal{A} \rangle$ is a compat Polish top making action cts.

Corollary (B–K) If X is already a Polish G-space, and $U \in \mathcal{O}(G)$, $B \in \Sigma^0_{\xi}(X)$, then U * B may be made open in a finer Polish topology $\subseteq \Sigma^0_{\xi+\omega}$.

Theorem (Hjorth 1999) In fact, the new Polish topology may be contained in Σ_{ξ}^{0} . Theorem (Sami 1994) If G is non-Archimedean and $\xi \ge 2$, the new topology may be 0-d.

Core Theorem (Becker-Kechris 1996)

Let G be a Polish group, X be a zero-dimensional Polish with a Borel G-action, $\mathcal{U} \subseteq \mathcal{O}(G)$ and $\mathcal{A} \subseteq \mathcal{O}(X)$ be countable bases s.t. \mathcal{A} is a Boolean algebra and

 $\mathcal{U} * \mathcal{A} \subseteq \mathcal{A}.$

Then $\langle \mathcal{U} * \mathcal{A} \rangle$ is a compat Polish top making action cts.

Corollary (B–K) If X is already a Polish G-space, and $U \in \mathcal{O}(G)$, $B \in \Sigma^0_{\xi}(X)$, then U * B may be made open in a finer Polish topology $\subseteq \Sigma^0_{\xi+\omega}$.

Theorem (Hjorth 1999) In fact, the new Polish topology may be contained in Σ_{ξ}^{0} . Theorem (Sami 1994) If G is non-Archimedean and $\xi \ge 2$, the new topology may be 0-d.

Corollary (of our Core Thm) For a quasi-Polish G-space X and $B \in \Sigma_{\xi}^{0}(X)$, U * B is open in a finer quasi-Polish topology $\subseteq \Sigma_{\xi}^{0}(X)$.

Better Core Theorem (C.)

Let G be a Polish group, X be a quasi-Polish with a Borel G-action, $\mathcal{U} \subseteq \mathcal{O}(G)$ and $\mathcal{A} \subseteq \mathcal{O}(X)$ be countable bases s.t. $\mathcal{U} = \mathcal{U}^{-1}$, \mathcal{A} is a lattice, and

 $\mathcal{U} * \mathcal{A} \subseteq \mathcal{A}.$

Then letting \mathcal{B} be the Boolean algebra generated by \mathcal{A} , $\langle \mathcal{U} * \mathcal{B} \rangle$ is a compat Polish top making the action cts, and is 0-d if \mathcal{U} consists of cosets.

Better Core Theorem (C.)

Let G be a Polish group, X be a quasi-Polish with a Borel G-action, $\mathcal{U} \subseteq \mathcal{O}(G)$ and $\mathcal{A} \subseteq \mathcal{O}(X)$ be countable bases s.t. $\mathcal{U} = \mathcal{U}^{-1}$, \mathcal{A} is a lattice, and

 $\mathcal{U} * \mathcal{A} \subseteq \mathcal{A}.$

Then letting \mathcal{B} be the Boolean algebra generated by \mathcal{A} , $\langle \mathcal{U} * \mathcal{B} \rangle$ is a compat Polish top making the action cts, and is 0-d if \mathcal{U} consists of cosets.

Corollary For a quasi-Polish G-space X and $B \in \Sigma_{\xi}^{0}(X)$, $\xi \ge 2$, U * B is open in a finer Polish topology $\subseteq \Sigma_{\xi}^{0}(X)$ (0-d if G is non-Archimedean).

Theorem (classical for Polish; C.)

Let G be a Polish group, X be a quasi-Polish G-space with a Borel action of G via homeomorphisms. Then the action is jointly continuous.

In other words, "if the action preserves an existing topology, we may find a topological realization compatible with that existing topology".

Theorem (classical for Polish; C.)

Let G be a Polish group, X be a quasi-Polish G-space with a Borel action of G via homeomorphisms. Then the action is jointly continuous.

In other words, "if the action preserves an existing topology, we may find a topological realization compatible with that existing topology".

Proof. For $B \in \mathcal{O}(X)$, by K–N, $\alpha^{-1}(B) = \bigcup_i (U_i \times B_i)$ where $U_i \in \mathcal{B}(G)$, $B_i \in \mathcal{O}(X)$.

Theorem (classical for Polish; C.)

Let G be a Polish group, X be a quasi-Polish G-space with a Borel action of G via homeomorphisms. Then the action is jointly continuous.

In other words, "if the action preserves an existing topology, we may find a topological realization compatible with that existing topology".

Proof. For $B \in \mathcal{O}(X)$, by K–N, $\alpha^{-1}(B) = \bigcup_i (U_i \times B_i)$ where $U_i \in \mathcal{B}(G)$, $B_i \in \mathcal{O}(X)$. So for any $U \in \mathcal{O}(G)$,

$$egin{aligned} U*B &= \exists_lpha^*((U imes X)\cap \pi_2^{-1}(B))\ &= \exists_{\pi_2}^*((U imes X)\cap lpha^{-1}(B))\ &= igcup_{U\cap U_i
eq^*arnothing}B_i\in\mathcal{O}(X). \end{aligned}$$

So $\mathcal{O}(G) * \mathcal{O}(X) \subseteq \mathcal{O}(X)$.

Theorem (classical for Polish; C.)

Let G be a Polish group, X be a quasi-Polish G-space with a Borel action of G via homeomorphisms. Then the action is jointly continuous.

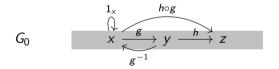
In other words, "if the action preserves an existing topology, we may find a topological realization compatible with that existing topology".

Proof. For $B \in \mathcal{O}(X)$, by K–N, $\alpha^{-1}(B) = \bigcup_i (U_i \times B_i)$ where $U_i \in \mathcal{B}(G)$, $B_i \in \mathcal{O}(X)$. So for any $U \in \mathcal{O}(G)$,

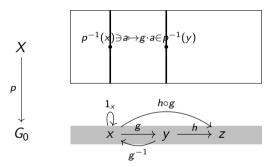
$$egin{aligned} U*B &= \exists_lpha^*((U imes X)\cap \pi_2^{-1}(B))\ &= \exists_{\pi_2}^*((U imes X)\cap lpha^{-1}(B))\ &= igcup_{U\cap U_i
eq^*arnothing}B_i\in\mathcal{O}(X). \end{aligned}$$

So $\mathcal{O}(G) * \mathcal{O}(X) \subseteq \mathcal{O}(X)$. By Pettis, $B = \bigcup_i (U_i * B_i) \in \langle \mathcal{O}(G) * \mathcal{O}(X) \rangle = \mathcal{O}(X)$. \Box

Definition A groupoid G consists of two maps $G \xrightarrow[]{\sigma}{\tau} G_0$ (src, tgt) and operations

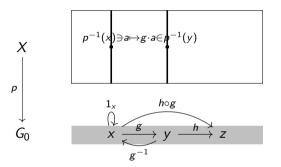


Definition A groupoid G consists of two maps $G \xrightarrow[]{\sigma}{\tau} G_0$ (src, tgt) and operations



An **action** of G on a bundle $p: X \to G_0$ is a map $\alpha: G \times_{G_0} X \to X$ s.t. each $g: x \to y \in G$ acts via a map $p^{-1}(x) \to p^{-1}(y)$.

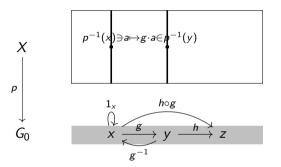
Definition A groupoid G consists of two maps $G \xrightarrow[]{\sigma}{\tau} G_0$ (src, tgt) and operations



An **action** of G on a bundle $p: X \to G_0$ is a map $\alpha: G \times_{G_0} X \to X$ s.t. each $g: x \to y \in G$ acts via a map $p^{-1}(x) \to p^{-1}(y)$.

A topological groupoid G is **open** if σ (equivalently, τ, μ) are.

Definition A groupoid G consists of two maps $G \xrightarrow[]{\sigma}{\tau} G_0$ (src, tgt) and operations



An **action** of G on a bundle $p: X \to G_0$ is a map $\alpha: G \times_{G_0} X \to X$ s.t. each $g: x \to y \in G$ acts via a map $p^{-1}(x) \to p^{-1}(y)$.

A topological groupoid G is **open** if σ (equivalently, τ, μ) are.

Note Most open quasi-Polish groupoids are not Polish!

Topological realization for groupoid actions

Theorem (Lupini for Polish; C.)

Let G be an open q-Pol gpd, $p: X \to G_0$ a st Borel G-space. For $B \in \mathcal{B}(X)$, TFAE:

(i) B is potentially open in some compat quasi-Polish top making p, α cts;

(ii) B is orbitwise open: $\forall a \in p^{-1}(x)$, B is open in quot top on $\sigma^{-1}(x) \twoheadrightarrow G \cdot a$;

(iii), (iv), (v) similarly to before.

Moreover, ctbly many such B may be made open at once.

Topological realization for groupoid actions

Theorem (Lupini for Polish; C.)

Let G be an open q-Pol gpd, $p: X \to G_0$ a st Borel G-space. For $B \in \mathcal{B}(X)$, TFAE:

(i) B is potentially open in some compat quasi-Polish top making p, α cts;

(ii) *B* is orbitwise open: $\forall a \in p^{-1}(x)$, *B* is open in quot top on $\sigma^{-1}(x) \twoheadrightarrow G \cdot a$; (iii), (iv), (v) similarly to before.

Moreover, ctbly many such B may be made open at once.

Corollary If X is a quasi-Polish G-space, and $B \in \Sigma^0_{\xi}(X)$, then U * B may be made open in a finer quasi-Polish topology $\subseteq \Sigma^0_{\xi}$.

Topological realization for groupoid actions

Theorem (Lupini for Polish; C.)

Let G be an open q-Pol gpd, $p: X \to G_0$ a st Borel G-space. For $B \in \mathcal{B}(X)$, TFAE:

(i) B is potentially open in some compat quasi-Polish top making p, α cts;

(ii) *B* is orbitwise open: $\forall a \in p^{-1}(x)$, *B* is open in quot top on $\sigma^{-1}(x) \twoheadrightarrow G \cdot a$; (iii), (iv), (v) similarly to before.

Moreover, ctbly many such B may be made open at once.

Corollary If X is a quasi-Polish G-space, and $B \in \Sigma^0_{\xi}(X)$, then U * B may be made open in a finer quasi-Polish topology $\subseteq \Sigma^0_{\xi}$.

Theorem (C.)

Let G be an open q-Pol gpd, $p : X \to G_0$ a standard Borel bundle of q-Pol spaces with a G-action via homeos. Then \exists global q-Pol top on X restricting to fiberwise tops.

For a group(oid) action on X, we know $B \in \mathcal{B}(X)$ potentially open iff orbitwise open. What about $R \in \mathcal{B}(X^n)$?

For a group(oid) action on X, we know $B \in \mathcal{B}(X)$ potentially open iff orbitwise open. What about $R \in \mathcal{B}(X^n)$?

Remark For a st Borel space X, $R \in X^n$ is potentially open iff $R = \bigcup_i (B_{i,1} \times \cdots \times B_{i,n})$.

For a group(oid) action on X, we know $B \in \mathcal{B}(X)$ potentially open iff orbitwise open. What about $R \in \mathcal{B}(X^n)$?

Remark For a st Borel space X, $R \in X^n$ is potentially open iff $R = \bigcup_i (B_{i,1} \times \cdots \times B_{i,n})$.

Theorem (C.)

Let G be a Polish group, X be a st Borel G-space. For $R \in \mathcal{B}(X^n)$, TFAE:

(i) *R* is potentially open in product top for some *q*-Pol top on *X* making action cts;
(ii) *R* is a ctbl union of Vaught transforms of Borel rectangles;
... (7 more conditions)

For a group(oid) action on X, we know $B \in \mathcal{B}(X)$ potentially open iff orbitwise open. What about $R \in \mathcal{B}(X^n)$?

Remark For a st Borel space X, $R \in X^n$ is potentially open iff $R = \bigcup_i (B_{i,1} \times \cdots \times B_{i,n})$.

Theorem (C.)

Let G be a Polish group, X be a st Borel G-space. For $R \in \mathcal{B}(X^n)$, TFAE:

(i) R is potentially open in product top for some q-Pol top on X making action cts;
(ii) R is a ctbl union of Vaught transforms of Borel rectangles;
... (7 more conditions)

In particular, this holds if R is G-invariant and a ctbl union of Borel rectangles:

Corollary If $(X, R_i)_i$ is a st Borel relational *G*-structure, *s.t.* each R_i is a ctbl union of Borel rectangles, then \exists a top realization w/ each R_i open.

For a group(oid) action on X, we know $B \in \mathcal{B}(X)$ potentially open iff orbitwise open. What about $R \in \mathcal{B}(X^n)$?

Remark For a st Borel space X, $R \in X^n$ is potentially open iff $R = \bigcup_i (B_{i,1} \times \cdots \times B_{i,n})$.

Theorem (C.)

Let G be a Polish group, X be a st Borel G-space. For $R \in \mathcal{B}(X^n)$, TFAE:

(i) R is potentially open in product top for some q-Pol top on X making action cts;
(ii) R is a ctbl union of Vaught transforms of Borel rectangles;
... (7 more conditions)

In particular, this holds if R is G-invariant and a ctbl union of Borel rectangles:

Corollary If $(X, R_i)_i$ is a st Borel relational *G*-structure, *s.t.* each R_i is a ctbl union of Borel rectangles, then \exists a top realization w/ each R_i open.

Similarly for groupoids, multi-sorted structures, change of topology, ...